上海牵祥教育

百万级别数据,数据库Mysql,Mongodb,Hbase如何选择?

作者:网友提供 来源:牵祥教育 时间:2020-01-01

情况说明:

现在需要做一个数据存储,500w左右的数据,日后每天大约产生5w条左右的数据。想把这些数据存储起来,供日后的数据分析用?使用上面说的三种数据库中的哪中比较好?是否有必要建立集群?

个人看法是:从长远角度看,由于单台机器的性能瓶颈,后期肯定要做集群,单纯的做复制最终也无法缓解单台master上读的负担。因此,使用mysql的话会使用cluser。但是了解到mysql的cluser要用好的化还要做负载均衡,而mysql的均衡器是第三方的,无法很好的与mysql整合。使用mongodb的自动分片集群能很好的解决这个问题,而且它的读写性能也快。Hbase提供了大数据存储的解决方案。

回到我问题,最终是要在大数据的基础上做数据分析,虽然mongodb也能与Mapreduce整合,但想必Hbase做这一块会更有优势。

我们的需求是做一个数据仓库,不是线上数据,即是OLAP。数据来源是很多的线上数据库(我们用的是mysql),每隔一段时间会同步数据过来(大概是几天的样子)。这些数据将用于日后的数据分析。因此,对实时性要求不是很高。

答案:

百万级的数据,无论侧重OLTP还是OLAP,当然就是MySql了。

过亿级的数据,侧重OLTP可以继续Mysql,侧重OLAP,就要分场景考虑了。

实时计算场景:强调实时性,常用于实时性要求较高的地方,可以选择Storm;

批处理计算场景:强调批处理,常用于数据挖掘、分析,可以选择Hadoop;

实时查询场景:强调查询实时响应,常用于把DB里的数据转化索引文件,通过搜索引擎来查询,可以选择solr/elasticsearch;

企业级ODS/EDW/数据集市场景:强调基于关系性数据库的大数据实时分析,常用于业务数据集成,可以选择Greenplum;

数据库系统一般分为两种类型:

一种是面向前台应用的,应用比较简单,但是重吞吐和高并发的OLTP类型;

一种是重计算的,对大数据集进行统计分析的OLAP类型。

传统数据库侧重交易处理,即OLTP,关注的是多用户的同时的双向操作,在保障即时性的要求下,系统通过内存来处理数据的分配、读写等操作,存在IO瓶颈。

OLTP(On-Line Transaction Processing,联机事务处理)系统也称为生产系统,它是事件驱动的、面向应用的,比如电子商务网站的交易系统就是一个典型的OLTP系统。OLTP的基本特点是:

数据在系统中产生;

基于交易的处理系统(Transaction-Based);

每次交易牵涉的数据量很小;

对响应时间要求非常高;

用户数量非常庞大,主要是操作人员;

数据库的各种操作主要基于索引进行。

分析型数据库是以实时多维分析技术作为基础,即侧重OLAP,对数据进行多角度的模拟和归纳,从而得出数据中所包含的信息和知识。

OLAP(On-Line Analytical Processing,联机分析处理)是基于数据仓库的信息分析处理过程,是数据仓库的用户接口部分。OLAP系统是跨部门的、面向主题的,其基本特点是:

本身不产生数据,其基础数据来源于生产系统中的操作数据(OperationalData);

基于查询的分析系统;

复杂查询经常使用多表联结、全表扫描等,牵涉的数据量往往十分庞大;

响应时间与具体查询有很大关系;

用户数量相对较小,其用户主要是业务人员与管理人员;

相关资源 更多
相关课程 更多

当前位置:

上海 牵祥教育 资料详情

本站展示的所有信息内容系由机构或个人用户发布,可能存在发布者所发布的信息,并未获得品牌所有人有效授权。本平台会加强审核,但无法完全排除差错或疏漏。郑重声明:本平台仅为免费注册用户提供免费的信息发布渠道,但不对其发布信息的真实性、准确性和合法性负责,对此也不承担任何法律责任。对于从本网站或本网站的任何有关服务所获得的资讯、内容或广告,您接受或信赖任何信息所产生之风险应自行承担,本网对任何使用或提供本网站信息的商业活动及其风险不承担任何责任。,如果侵犯,请及时通知我们,发送邮件至15610150293@126.com本网站将在第一时间及时删除。